


# FORM 1A



| DATA INPUT FORM     |    |       |           |                    |      |        |              |            |           |
|---------------------|----|-------|-----------|--------------------|------|--------|--------------|------------|-----------|
| DATA INPUT - SIZING |    |       |           | DATA INPUT - LOADS |      |        |              |            |           |
| Item                | Un | Value | Validated | Item               | Un   | Value  | Max Span (m) | Value (kN) | Validated |
| H <sub>1</sub>      | mm | 1330  |           | F <sub>1</sub>     | kN/m | 2.2000 | 1.6          | 3.5200     |           |
| H                   | mm | 1506  |           | F <sub>2</sub>     | kN/m | 2.2000 | 1.6          | 3.5200     |           |
| L                   | mm | 1600  |           |                    |      |        |              |            |           |

| Horizontal Profiles                                                                                                                                                                             | Type:                          | Rod                                                                                                                                    | Pressix CC 41                     | siFramo 80/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | siFramo 80 | siFramo 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                 |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| L <sub>max</sub> (mm)                                                                                                                                                                           | Cut Length (mm)                | Max. Loads (kN)                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 750                                                                                                                                                                                             | 742                            | 4.67                                                                                                                                   | 30.20                             | 53.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 161.15     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1000                                                                                                                                                                                            | 990                            | 2.62                                                                                                                                   | 16.99                             | 29.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.64      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1200                                                                                                                                                                                            | 1189                           | 1.82                                                                                                                                   | 11.80                             | 20.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.95      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1500                                                                                                                                                                                            | 1487                           | 1.17                                                                                                                                   | 7.55                              | 13.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.29      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1600                                                                                                                                                                                            | 1600                           | 1.03                                                                                                                                   | 6.64                              | 11.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.40      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Profile ID                                                                                                                                                                                      | Formula                        | Profile Selection                                                                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 1.1                                                                                                                                                                                             | F <sub>1</sub> +F <sub>2</sub> | <del>1.1</del>                                                                                                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Vertical Profiles                                                                                                                                                                               | H <sub>max</sub> (mm)          | Max. Loads (kN)                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| All Sizes                                                                                                                                                                                       |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Profile ID                                                                                                                                                                                      | Formula                        | Profile Selection                                                                                                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2.1                                                                                                                                                                                             | F <sub>1</sub> +F <sub>2</sub> | <del>2.1</del>                                                                                                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2.2                                                                                                                                                                                             | F <sub>1</sub> +F <sub>2</sub> | <del>2.2</del>                                                                                                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Horizontal Loads Calculation Method                                                                                                                                                             |                                |                                                                                                                                        | Vertical Loads Calculation Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Point Load                                                                                                                                                                                      |                                | Example:                                                                                                                               |                                   | Load Distribution Assumption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Example:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                 |                                | For a horizontal beam with a Length of 1000mm, the Maximum Loads supported for the different configuration of Loads are the following: |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <ul style="list-style-type: none"> <li>- Single Point Load - 12.06 kN</li> <li>- Distributed Load - 24.13 kN/m</li> <li>- 2 Point Load - 18.10 kN</li> <li>- 3 Point Load - 18.09 kN</li> </ul> |                                |                                                                                                                                        |                                   | <ul style="list-style-type: none"> <li>1. Maximum working forces to be calculated as Pointed Load</li> <li>2. The worst scenario should consider that the forces are off-center of the horizontal profiles and that will cause a bigger effort in the critical point of the vertical profile</li> <li>3. <math>\mu(F_1+F_2+F_3)/2 \leq F_{max}</math><br/> <math>\mu</math> is the coefficient that assumes that the forces are not centered, concentrating more efforts on one side of the structure</li> </ul> |            | <ul style="list-style-type: none"> <li>1. Initial Assumptions: <ul style="list-style-type: none"> <li>- 3 levels;</li> <li>- Loads Not Centered;</li> <li>- Coefficient <math>\mu = 1.2</math>;</li> <li>- Maximum axial resistance of the vertical profile: 20kN</li> </ul> </li> <li>2. For this case: <ul style="list-style-type: none"> <li>- <math>\mu(F_1+F_2+F_3)/2 \leq F_{max}</math></li> <li>- <math>F_1+F_2+F_3 \leq (20 * 2)/1,2</math></li> <li>- <math>F_1+F_2+F_3 \leq (20 * 2)/1,2</math></li> <li>- <math>F_1+F_2+F_3 \leq 33,33kN</math></li> </ul> </li> <li>3. The user only needs to compare the sum of the Fn Load values with the supported values in the table and select the appropriate beam type.</li> </ul> |  |
| Distributed Load                                                                                                                                                                                |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                 |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2 Point Loads                                                                                                                                                                                   |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                 |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 3 Point Loads                                                                                                                                                                                   |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                 |                                |                                                                                                                                        |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

## NOTE:

### FORM2A Production:

Defines primary and secondary support component sizes, types and part numbers.

### Scope Exclusion:

Frame interface with the building structure is not included in this document.

For comprehensive guidelines and additional information, contact the project management team.

| Support ID   | DC.FWA.LDB.1.1.1 |
|--------------|------------------|
| Order Amount | 9                |

## OVERVIEW

MC Prefab is a collaborative joint venture between CTS, MECWIDE, and BIMMS. The primary objective of this partnership is to streamline the production of Mechanical, Electrical, and Plumbing (MEP) support structures.

To achieve standardization and optimization in support production, installation, and to minimize material waste, a comprehensive catalog of solutions has been developed. This catalog defines all support solutions along with their respective variables.

## Process Stages:

The overall process of MEP support structure production and installation is divided into three distinct stages:

1-Preparation

2-Production

3-Installation

Each stage requires specific documentation, outlined as follows:

**Form1A:** Base Specification for Support Solution Definition

**Form2A:** Fabrication Drawing


**Form3A:** Installation Drawing

These documents ensure the standardization and efficiency of the entire process, from initial preparation through to final installation.

For any further details or clarifications, please refer to the MC Prefab documentation guidelines or contact the project management team.

## Naming Convention

DC.FWA.COR.1.1-1A



|      |            |                        |       |       |
|------|------------|------------------------|-------|-------|
| P02  | 03/12/2024 | Issued For Information | GJ    | JT    |
| P01  | 08/11/2024 | Issued For Information | GJ    | JT    |
| Rev. | Date       | Description            | Sign. | Veri. |

## JOINT VENTURE:

**MC Prefab**  
Nordics

## DESIGN & BUILD PARTNERS:

**CTS Nordics**

**BIMMS**  
integrated engineering

**MECWIDE**  
ENGINEERING CHALLENGES

## DRAWING NAME:

DC.FWA.LDB.1.1.1-1A

| DRAWING STATUS:        | SCALE: | STATUS: |
|------------------------|--------|---------|
| Issued For Information |        | S2      |

| DATE CREATED: | LAST REV. DATE: | SIGNED: | CONTROL: |
|---------------|-----------------|---------|----------|
| 08/11/2024    | 03/12/2024      | GJ      | JT       |

| DRAWING NUMBER:              | FORMAT: | REVISION: |
|------------------------------|---------|-----------|
| FIN3005-BMS-XX-XX-DR-J-41111 | A2      | P02       |